Abstract

Automated prostate segmentation from 3D MR images is very challenging due to large variations of prostate shape and indistinct prostate boundaries. We propose a novel volumetric convolutional neural network (ConvNet) with mixed residual connections to cope with this challenging problem. Compared with previous methods, our volumetric ConvNet has two compelling advantages. First, it is implemented in a 3D manner and can fully exploit the 3D spatial contextual information of input data to perform efficient, precise and volume-to-volume prediction. Second and more important, the novel combination of residual connections (i.e., long and short) can greatly improve the training efficiency and discriminative capability of our network by enhancing the information propagation within the ConvNet both locally and globally. While the forward propagation of location information can improve the segmentation accuracy, the smooth backward propagation of gradient flow can accelerate the convergence speed and enhance the discrimination capability. Extensive experiments on the open MICCAI PROMISE12 challenge dataset corroborated the effectiveness of the proposed volumetric ConvNet with mixed residual connections. Our method ranked the first in the challenge, outperforming other competitors by a large margin with respect to most of evaluation metrics. The proposed volumetric ConvNet is general enough and can be easily extended to other medical image analysis tasks, especially ones with limited training data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.