Abstract

This paper aims to efficiently construct the volume of heterogeneous single-scattering albedo for a given medium that would lead to desired color appearance. We achieve this goal by formulating it as a volumetric style transfer problem in which an input 3D density volume is stylized using color features extracted from a reference 2D image. Unlike existing algorithms that require cumbersome iterative optimizations, our method leverages a feed-forward deep neural network with multiple well-designed modules. At the core of our network is a stylizing kernel predictor (SKP) that extracts multi-scale feature maps from a 2D style image and predicts a handful of stylizing kernels as a highly non-linear combination of the feature maps. Each group of stylizing kernels represents a specific style. A volume autoencoder (VolAE) is designed and jointly learned with the SKP to transform a density volume to an albedo volume based on these stylizing kernels. Since the autoencoder does not encode any style information, it can generate different albedo volumes with a wide range of appearance once training is completed. Additionally, a hybrid multi-scale loss function is used to learn plausible color features and guarantee temporal coherence for time-evolving volumes. Through comprehensive experiments, we validate the effectiveness of our method and show its superiority by comparing against state-of-the-arts. We show that with our method a novice user can easily create a diverse set of realistic translucent effects for 3D models (either static or dynamic), neglecting any cumbersome process of parameter tuning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call