Abstract
BackgroundMachine learning techniques have shown excellent performance in three-dimensional medical image analysis, but have not been applied to acute uncomplicated type B aortic dissection (auTBAD) using Society for Vascular Surgery (SVS) and Society of Thoracic Surgeons (STS)-defined aortic zones. The purpose of this study was to establish a trained, automatic machine learning aortic zone segmentation model to facilitate performance of an aortic zone volumetric comparison between patients with auTBAD based on the rate of aortic growth. MethodsPatients with auTBAD and serial imaging were identified. For each patient, imaging characteristics from two computed tomography (CT) scans were analyzed: (1) the baseline CT angiography (CTA) at the index admission and (2) either the most recent surveillance CTA or the most recent CTA before an aortic intervention. Patients were stratified into two comparative groups based on aortic growth: rapid growth (diameter increase of ≥5 mm/year) and no or slow growth (diameter increase of <5 mm/year). Deidentified images were imported into an open source software package for medical image analysis and images were annotated based on SVS/STS criteria for aortic zones. Our model was trained using four-fold cross-validation. The segmentation output was used to calculate aortic zone volumes from each imaging study. ResultsOf 59 patients identified for inclusion, rapid growth was observed in 33 patients (56%) and no or slow growth was observed in 26 patients (44%). There were no differences in baseline demographics, comorbidities, admission mean arterial pressure, number of discharge antihypertensives, or high-risk imaging characteristics between groups (P > .05 for all). Median duration between baseline and interval CT was 1.07 years (interquartile range [IQR], 0.38-2.57). Postdischarge aortic intervention was performed in 13 patients (22%) at a mean of 1.5 ± 1.2 years, with no difference between the groups (P > .05). Among all patients, the largest relative percent increases in zone volumes over time were found in zone 4 (13.9%; IQR, −6.82 to 35.1) and zone 5 (13.4%; IQR, −7.78 to 37.9). There were no differences in baseline zone volumes between groups (P > .05 for all). The average Dice coefficient, a performance measure of the model output, was 0.73. Performance was best in zone 5 (0.84) and zone 9 (0.91). ConclusionsWe describe an automatic deep learning segmentation model incorporating SVS-defined aortic zones. The open source, trained model demonstrates concordance to the manually segmented aortas with the strongest performance in zones 5 and 9, providing a framework for further clinical applications. In our limited sample, there were no differences in baseline aortic zone volumes between patients with rapid growth and patients with no or slow growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.