Abstract
The combination of Markov state modeling (MSM) and molecular dynamics (MD) simulations has been shown in recent years to be a valuable approach to unravel the slow processes of molecular systems with increasing complexity. While the algorithms for intermediate steps in the MSM workflow such as featurization and dimensionality reduction have been specifically adapted to MD datasets, conventional clustering methods are generally applied to the discretization step. This work adds to recent efforts to develop specialized density-based clustering algorithms for the Boltzmann-weighted data from MD simulations. We introduce the volume-scaled common nearest neighbor (vs-CNN) clustering that is an adapted version of the common nearest neighbor (CNN) algorithm. A major advantage of the proposed algorithm is that the introduced density-based criterion directly links to a free-energy notion via Boltzmann inversion. Such a free-energy perspective allows a straightforward hierarchical scheme to identify conformational clusters at different levels of a generally rugged free-energy landscape of complex molecular systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.