Abstract
AbstractAs focus of humans has turned to renewable energy, the role of anaerobic digestion has started to become economically viable. Reducing the volume of agro-wastes for the generation of gaseous and liquid fractions with energy carriers and valuable products is an enormous challenge. A two-stage anaerobic digestion process consisting of hydrogenic stage followed by methanogenic stage was studied in a laboratory scale. Five simple nonlinear models of this continuous cascade process were studied in order to determine the optimal ratio of working volumes of bioreactors, in view of maximising energy production. This ratio was reported for all adopted models. The optimal ratio (maximal energy production criterion) depends of the adopted mathematical model. Static characteristics of both bioreactors were obtained usingSymbolyctoolbox ofMatlab.Numerical experiments concerning dynamics of the main variables of both bioreactors for these models usingSimulinkofMatlabare performed for different step changes of the dilution rate of the first bioreactor, together with the influence of the substrate (acetate) inhibition for one of the models. The value of the constant of inhibition plays an important role on the admissible interval of the dilution rate. The developed idea could serve for optimally designed experiments of anaerobic digestion for production of hydrogen and methane from lignocelluloses wastes (wheat straw) in two phase process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.