Abstract
In noncommutative probability theory independence can be based on free products instead of tensor products. This yields a highly noncommutative theory: free probability theory (for an introduction see [9]). The analogue of entropy in the free context was introduced by the second named author in [8]. Here we show that Shannon's entropy power inequality ([6, 1]) has an analogue for the free entropy χ(X) (Theorem 2.1). The free entropy, consistent with Boltzmann's formulaS=klogW, was defined via volumes of matricial microstates. Proving the free entropy power inequality naturally becomes a geometric question. Restricting the Minkowski sum of two sets means to specify the set of pairs of points which will be added. The relevant inequality, which holds when the set of addable points is sufficiently large, differs from the Brunn-Minkowski inequality by having the exponent 1/n replaced by 2/n. Its proof uses the rearrangement inequality of Brascamp-Lieb-Lüttinger ([2]). Besides the free entropy power inequality, note that the inequality for restricted Minkowski sums may also underlie the classical Shannon entropy power inequality (see 3.2 below).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.