Abstract

One nappe of a right circular cone, cut by a transverse plane, splits the cone into an infinite frustum and a cone with an elliptical section of finite volume. There is a standard way of computing this finite volume, which involves finding the parameters of the so-called shadow ellipse, the characteristics of the oblique ellipse (the cut) and, finally, the projection of the vertex of the cone onto the oblique ellipse. This paper shows that it is possible to compute that volume just by using the information of the shadow ellipse and the height of the cone. Indeed, the finite slant cone has the same volume of an elliptic right cone, with the base being the shadow ellipse of the cut portion and with the height being the distance between the vertex of the cone and the intersection of the height of the original cone with the cutting plane. This is proved by introducing a volume-preserving shear transformation of the elliptical slant cone to a right cone, so that the standard volume formula for a cone can be straightforwardly applied. This implies a simplification in the procedure for computing the volume, since the oblique ellipse—i.e., the difficult part—can be neglected because only the shadow ellipse needs to be determined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.