Abstract

High-throughput microscopy allows researchers to produce large volumetric images of biological tissue at sub-micrometer resolution. Serial electron microscopy (EM) has the ability to improve three-dimensional imaging dramatically by providing nanometer-scale resolution. Serial EM data sets of brain tissue can potentially be used to reconstruct the complex structure of biological neural networks. These data sets consist of gigabytes of volumetric data densely packed with anatomical information. This makes three-dimensional EM data sets difficult to visualize. In this paper, we present new methods for visualizing EM data sets using a novel transfer function based on the local variance of volumetric features. We first construct a tensor field that describes the local shape and orientation of structures. These tensors are then used to visualize anatomical features such as cell bodies, membranes, and fibers. We do this by using the tensor shape and orientation to design transfer functions that allow selective visualization of features in dense EM image stacks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.