Abstract

BackgroundFunctional and morphological changes of the heart influence blood flow patterns. Therefore, flow patterns may carry diagnostic and prognostic information. Three-dimensional, time-resolved, three-directional phase contrast cardiovascular magnetic resonance (4D PC-CMR) can image flow patterns with unique detail, and using new flow visualization methods may lead to new insights. The aim of this study is to present and validate a novel visualization method with a quantitative potential for blood flow from 4D PC-CMR, called Volume Tracking, and investigate if Volume Tracking complements particle tracing, the most common visualization method used today.MethodsEight healthy volunteers and one patient with a large apical left ventricular aneurysm underwent 4D PC-CMR flow imaging of the whole heart. Volume Tracking and particle tracing visualizations were compared visually side-by-side in a visualization software package. To validate Volume Tracking, the number of particle traces that agreed with the Volume Tracking visualizations was counted and expressed as a percentage of total released particles in mid-diastole and end-diastole respectively. Two independent observers described blood flow patterns in the left ventricle using Volume Tracking visualizations.ResultsVolume Tracking was feasible in all eight healthy volunteers and in the patient. Visually, Volume Tracking and particle tracing are complementary methods, showing different aspects of the flow. When validated against particle tracing, on average 90.5% and 87.8% of the particles agreed with the Volume Tracking surface in mid-diastole and end-diastole respectively. Inflow patterns in the left ventricle varied between the subjects, with excellent agreement between observers. The left ventricular inflow pattern in the patient differed from the healthy subjects.ConclusionVolume Tracking is a new visualization method for blood flow measured by 4D PC-CMR. Volume Tracking complements and provides incremental information compared to particle tracing that may lead to a better understanding of blood flow and may improve diagnosis and prognosis of cardiovascular diseases.

Highlights

  • Functional and morphological changes of the heart influence blood flow patterns

  • Volume Tracking can provide incremental information that may lead to a better understanding of blood flow and may improve diagnosis and prognosis of cardiovascular diseases

  • The diastolic inflow pattern in the patient is notably different from the volunteers, suggesting that blood flow patterns may be used as a measure of left ventricle (LV) function and as an early indicator of disease

Read more

Summary

Introduction

Functional and morphological changes of the heart influence blood flow patterns. flow patterns may carry diagnostic and prognostic information. Three-dimensional, time-resolved, three-directional phase contrast cardiovascular magnetic resonance (4D PC-CMR) can image flow patterns with unique detail, and using new flow visualization methods may lead to new insights. Cardiovascular Magnetic Resonance (CMR) enables the measurement of the full three-dimensional and time-resolved velocity field in the heart and great vessels using four-dimensional Phase Contrast Cardiovascular Magnetic Resonance (4D PC-CMR) [5,6,7]. Due to the complexity of 4D flow fields, there exists no single natural representation that can show all details of the flow. To handle this abundance of information, flow visualization is often used for discovery, understanding and communication about flow [8]. In the case of threedimensional, time-resolved (4D) flow, visualization is beneficial, but a necessity, since it would be an extremely time-consuming and error-prone task to interpret the flow using two-dimensional slices of the velocity volume [9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call