Abstract
In the last decade, neurosciences have had an increasing interest in resting state functional magnetic resonance imaging (rs-fMRI) as a result of its advantages, such as high spatial resolution, compared to other brain exploration techniques. To improve the technique, the elimination of artifacts through Independent Components Analysis (ICA) has been proposed, as this can separate neural signal and noise, opening possibilities for automatic classification. The main classification techniques have focused on processes based on typical machine learning. However, there are currently more robust approaches such as convolutional neural networks, which can deal with complex problems directly from the data without feature selection and even with data that does not have a simple interpretation, being limited by the amount of data necessary for training and its high computational cost. This research focused on studying four methods of volume reduction mitigating the computational cost for the training of 3 models based on convolutional neural networks. One of the reduction techniques is a novel approach that we call Reduction by Consecutive Binary Patterns (RCBP), which was shown to preserve the spatial features of the independent components. In addition, the RCBP showed networks in components associated with neuronal activity more clearly. The networks achieved accuracy above 98 % in classification, and one network was even found to be over 99 % accurate, outperforming most machine learning-based classification algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.