Abstract

We present a mean-field theory to describe biaxial nematic phases of side-chain liquid crystalline elastomers. Novel biaxial nematic phases are theoretically predicted in a side-chain liquid crystalline polymer and gel, where side chains (mesogens) and rigid-backbone chains favor mutually perpendicular orientations. We calculate uniaxial and biaxial orientational order parameters and examine deformations of the gel and stable biaxial nematic phases of the liquid crystalline gel dissolved in isotropic solvents. We predict first-order uniaxial-biaxial nematic phase transitions of the gel and the volume of the gel is discontinuously changed at the phase transition temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.