Abstract

Volume changes that accompany protein unfolding and ligand binding are important but largely neglected thermodynamic parameters that may facilitate rational drug design. Here, we determined the volume of lead compound ICPD47 binding to an anticancer target, heat shock protein 90 N-terminal domain, using a pressure shift assay (PressureFluor). The ligand exhibited a stabilizing effect on the protein by increasing its melting pressure and temperature. The Gibbs free energy of unfolding depends on the absence or presence of ligand and has an elliptical shape. Ellipse size increases upon addition of the strongly binding ligand, which stabilizes the protein. The three-dimensional (3D) ellipsoidal surface of the Gibbs free energy of unfolding was calculated with increasing ligand concentrations. The negative volume of ligand binding was relatively large and significantly exceeded the volume of protein unfolding. The pressure shift assay technique could be used to determine the volume changes associated with both protein unfolding as well as ligand binding to protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.