Abstract
In different animal models, auditory nerve fibers display variation in spontaneous activity and response threshold. Functional and structural differences among inner hair cell ribbon synapses are believed to contribute to this variation. The relative volumes of synaptic proteins at individual synapses might be one such difference. This idea is based on the observation of opposing volume gradients of the presynaptic ribbons and associated postsynaptic glutamate receptor patches in mice along the pillar modiolar axis of the inner hair cell, the same axis along which fibers were shown to vary in their physiological properties. However, it is unclear whether these opposing gradients are expressed consistently across animal models. In addition, such volume gradients observed for separate populations of presynaptic ribbons and postsynaptic glutamate receptor patches suggest different relative volumes of these synaptic structures at individual synapses; however, these differences have not been examined in mice. Furthermore, it is unclear whether such gradients are limited to these synaptic proteins. Therefore, we analyzed organs of Corti isolated from CBA/CaJ, C57BL/6, and FVB/NJ mice using immunofluorescence, confocal microscopy, and quantitative image analysis. We find consistent expression of presynaptic volume gradients across strains of mice and inconsistent expression of postsynaptic volume gradients. We find differences in the relative volume of synaptic proteins, but these are different between CBA/CaJ mice, and C57BL/6 and FVB/NJ mice. We find similar results in C57BL/6 and FVB/NJ mice when using other postsynaptic density proteins (Shank1, Homer, and PSD95). These results have implications for the mechanisms by which volumes of synaptic proteins contribute to variations in the physiology of individual auditory nerve fibers and their vulnerability to excitotoxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.