Abstract
We consider the quark-meson-model in a finite three-dimensional volume using the Schwinger proper-time renormalization group. We derive and solve the flow equations for finite volume in local potential approximation. In order to break chiral symmetry in the finite volume, we introduce a small current quark mass. The corresponding effective meson potential breaks chiral O(4) symmetry explicitly, depending on $\ensuremath{\sigma}$ and $\stackrel{\ensuremath{\rightarrow}}{\ensuremath{\pi}}$ fields separately. We calculate the volume dependence of the pion mass and of the pion decay constant with the renormalization group flow equations and compare with recent results from chiral perturbation theory in a finite volume.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.