Abstract
Volume dependence of the spectral weight is usually used as a simple criteria to distinguish single-particle states from multiparticle states in lattice QCD calculations. Within a solvable model, the Lee model, we show that this criteria is in principle only valid for a stable particle or a narrow resonance. If the resonance being studied is broad, then the volume dependence of the corresponding spectral weight resembles that of a multiparticle state instead of a single-particle one. For an unstable V particle in the Lee model, the transition from single-particle to multiparticle volume dependence is governed by the ratio of its physical width to the typical level spacing in the finite volume. We estimate this ratio for practical lattice QCD simulations and find that, for most cases, the resonance studied in lattice QCD simulations still resembles the single-particle behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.