Abstract

Volume changes and whole cell ionic currents activated by gradual osmolarity reductions (GOR) of 1.8 mosM/min were characterized in C6 glioma cells. Cells swell less in GOR than after sudden osmolarity reductions (SOR), the extent of swelling being partly Ca(2+) dependent. In nominally Ca(2+)-free conditions, GOR activated predominantly whole cell outward currents. Cells depolarized from the initial -79 mV to a steady state of -54 mV reached at 18% osmolarity reduction [hyposmolarity of -18% (H-18%)]. Recordings of Cl(-) and K(+) currents showed activation at H-3% of an outwardly rectifying Cl(-) current, with conductance of 1.6 nS, sensitive to niflumic acid and 5-nitro-2-(3-phenylpropylamino)benzoic acid, followed at H-18% by an outwardly rectifying K(+) current with conductance of 4.1 nS, inhibited by clofilium but insensitive to the typical K(+) channel blockers. With 200 nM Ca(2+) in the patch pipette, whole cell currents activated at H-3% and at H-13% cells depolarized from -77 to -63 mV. A K(+) current activated at H-1%, showing a rapid increase in conductance, suppressed by charybdotoxin and insensitive to clofilium. These results show the operation of two different K(+) channels in response to GOR in the same cell type, activated by Ca(2+) and osmolarity and with different osmolarity activation thresholds. Taurine and glutamate efflux, monitored by labeled tracers, showed delayed osmolarity thresholds of H-39 and H-33%, respectively. This observation clearly separates the Cl(-) and amino acid osmosensitive pathways. The delayed amino acid efflux may contribute to counteract swelling at more stringent osmolarity reductions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call