Abstract

AbstractGlacial lake outburst flood hazards in the Himalayan region have received considerable attention in recent years. Accurate volume estimation for glacial lakes is important for calculating outburst flood peak discharge and simulating flood evolution. Longbasaba lake, a potentially dangerous moraine-dammed lake, is located on the north side of the Himalaya. Its depth was surveyed using the SyQwest Hydrobox™ high-resolution echo sounder, and 6916 measurements were collected in September 2009. The maximum and average depths of the lake were 102 ± 2 and 48 ± 2 m, respectively. The morphology of the lake basin was modeled by constructing a triangulated irregular network, and the lake was found to have a storage capacity of 0.064 ± 0.002 km3. Multi-source remote-sensing images from Landsat MSS, Landsat TM/ETM+ and Terra ASTER and a topographic map were digitized to delineate the outlines of the lake between 1977 and 2009. The results indicate that the length and area of the lake have increased during the past 32 years, with a drastic expansion occurring since 2000. Based on volume and area data of Longbasaba lake in different periods, we deduced an empirical equation of the lake volume-area relationship that can be used to calculate the storage capacity of similar moraine-dammed lakes in the Himalayan region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call