Abstract

ObjectiveFDG PET/CT plays a significant role in the diagnosis of inflammatory heart diseases and cardiac tumors. We attempted to determine the optimal FDG uptake threshold for volume-based analyses and to evaluate the relationship between the myocardial physiological uptake volume in FDG PET and several clinical factors. MethodsA total of 190 patients were retrospectively analyzed. The cardiac metabolic volume (CMV) was defined as a volume within the boundary determined by a threshold (SUVmean of blood pool × 1.5). ResultsThe SUVmean of the blood pool measured in the descending aorta (DA) (r = 0.86, intraclass correlation coefficient [ICC] = 0.93, P < 0.0001) and that in the left ventricle (LV) cavity (r = 0.87, ICC = 0.90, P < 0.0001) showed high inter-operator reproducibility. However, the SUVmean in the LV cavity showed a significant correlation with the CMV (P = 0.0002, r = 0.26). The CMV in the patients who fasted < 18 hours were significantly higher (49.7 ± 73.2 vs. 18.0 ± 53.8 mL, P = 0.0013) compared to the patients with > 18-hour fasting. The multivariate analysis demonstrated that only the fasting period > 18 hours was independently associated with CMV = 0. ConclusionOur findings revealed that the DA is suitable to decide the threshold for the volume-based analysis. The fasting time was significantly associated with the cardiac FDG uptake.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.