Abstract

In this paper, volume barrier discharge with different gap distances is added on the discharge border of high-voltage electrode of annular surface barrier discharge for generating volume added surface barrier discharge (V-SBD) excited by bipolar nanosecond high-voltage pulse power in atmospheric air. The excited V-SBDs consist of surface barrier discharge (d = 0 mm) and volume added surface barrier discharges (d = 2 mm and 3 mm). The optical emission spectra are recorded for calculating emission intensities of N2 (C3Πu → B3Πg) and (B2 → X2 ), and simulating rotational and vibrational temperatures. The influences of gap distance of V-SBD on emission intensity and plasma temperature are also investigated and analyzed. The results show that d = 0 mm structure can excite the largest emission intensity of N2 (C3Πu → B3Πg), while the existence of volume barrier discharge can delay the occurrence of the peak value of the emission intensity ratio of (B2 → X2 )/N2 (C3Πu → B3Πg) during the rising period of the applied voltage pulse and weaken it during the end period. The increasing factor of emission intensity is effected by the pulse repetition rate. The d = 3 mm structure has the highest threshold voltage while it can maintain more emission intensity of N2 (C3Πu → B3Πg) than that of d = 2 mm structure. The structure of d = 2 mm can maintain more increasing factor than that of the d = 3 mm structure with varying pulse repetition rate. Besides, the rotational temperatures of three V-SBD structures are slightly affected when the gap distance and pulse repetition rate vary. The vibrational temperatures have decaying tendencies of all three structures with the increasing pulse repetition rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.