Abstract

This paper presents a ranked differential evolution (RDE) algorithm for solving the identification problem of non-linear discrete-time systems based on a Volterra filter model. In the improved method, a scale factor, generated by combining a sine function and randomness, effectively keeps a balance between the global search and the local search. Also, the mutation operation is modified after ranking all candidate solutions of the population to help avoid the occurrence of premature convergence. Finally, two examples including a highly nonlinear discrete-time rational system and a real heat exchanger are used to evaluate the performance of the RDE algorithm and five other approaches. Numerical experiments and comparisons demonstrate that the RDE algorithm performs better than the other approaches in most cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.