Abstract

Citrus limon peel (kitchen waste) and Leucaena leucocephala seeds (agricultural waste) were used as a modifier for fabrication of modified carbon paste electrode for determination of mercury in aqueous sample using differential pulse anodic stripping voltammetry. Mercury was adsorbed on electrode surface at open circuit and anodic stripping voltammetric scan was run from -0.5 to 0.5 V. Various electrochemical parameters including amount of modifier, supporting electrolyte, accumulating solvent, pH of the accumulating solvent, and accumulation time were investigated. The effect of presence of other metal ions and surfactants was also studied. In comparison C. limon peel proved to be a better modifier than L. leucocephala seed biomass. This was justified by electrode characterization using cyclic voltammetry that indicated decrease in resistance of electrode when C. limon peel was used as modifier and increase when modifier was L. leucocephala seeds. Maximum current response was obtained using 5% C. limon peel biomass, hydrochloric acid as supporting electrolyte, acetate buffer of pH 6 as an accumulating solvent, 10-min accumulation time, and scan rate of 50 mV/s. Linear calibration curves were obtained in the concentration range 100 to 1,000 μg L(-1) of mercury for accumulation time of 10 min with limit of detection of 57.75 μg L(-1) and limit of quantification of 192.48 μg L(-1). This technique does not use mercury as electrode material and, therefore, has a positive environmental benefit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call