Abstract

In this study, the electro-oxidative behaviour and determination of itraconazole at a glassy carbon electrode have been investigated using cyclic voltammetry, differential pulse anodic stripping voltammetry (DPASV), and square wave anodic stripping voltammetric (SWASV) techniques, under different experimental conditions. The voltammetric peak current for the oxidation of itraconazole has been analyzed at different pH, scan rate and concentrations. The voltammograms have exhibited irreversible oxidation of ITRA in B.R. buffer of pH 3.0. The oxidation of itraconazole gives a well-defined irreversible peak at glassy carbon electrode vs. Ag/AgCl as reference electrode. The oxidation process is adsorption controlled. A linear response has been obtained between 26.7×10–6 to 152.8×10–6 M in non-aqueous media for all the techniques. The analyzed square wave anodic voltammetric and differential pulse anodic stripping voltammetric methods show limit of detection at 27.28 µM and 65.16 µM respectively. Ultimately, the proposed validated method has been effectively applied for the determination of the antifungal drug which is commercially available in solid form.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call