Abstract

A selective and sensitive voltammetric sensor for the measurement of the chemotherapy drug cisplatin was based on bismuth nanoparticles decorated on a graphene-modified glassy carbon electrode (BiNPs/Gr/GCE). The surface morphologies of electrode modifications were characterized using scanning electron microscopy (SEM). Electrochemical characteristics were evaluated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Differential pulse voltammetry (DPV) was employed to detect cisplatin oxidation. Under the optimal conditions, oxidation peak currents increased linearly with cisplatin concentration from 6.0 to 180 μM. The detection limit was calculated to be 4.4 μM and the limit of quantification was 14.7 μM. Analytical performance studies demonstrated the good electrode reproducibility and the selectivity of the BiNPs/Gr/GCE towards cisplatin detection. The developed cisplatin sensor was successfully utilized to measure cisplatin in samples of human serum. Recoveries ranged from 89 to 102% and the results from the developed sensor were concordant (P > 0.05) with the results of analysis by high-performance liquid chromatography coupled with ultraviolet detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.