Abstract
The electrochemical oxidation of thiocytosine on the surface of carbon-paste electrode modified with Schiff base (salophen derivatives) complexes of cobalt is studied. The effect of the substituents in the structure of salophen on the catalytic property of the modified electrode is investigated by using cyclic and differential pulse voltammetry. Cobalt (II)-5-nitrosalophen, because of its electrophilic functional groups, leads to a considerable enhancement in the catalytic activity, sensitivity (peak current), and a marked increase in the anodic potential of the modified electrode. The differential pulse voltammetry is applied as a very sensitive method for the detection of thiocytosine. The linear dynamic range was between 1 × 10−3 to 4 × 10−6 M with a slope of 0.0168 μA/μM, and the detection limit was 1 × 10−6 M. The modified electrode is successfully applied for the voltammetric detection of thiocytosine in human synthetic serum sample and also pharmaceutical preparations. A linear range from 1 × 10−3 to 1 × 10−5 M with a slope of 0.0175 μA/μM is resulted for the standard addition of thiocytosine spiked to the buffered human serum, which is differing from the curve in buffer solution about 4%. The electrode has a very good reproducibility (relative standard deviation for the slope of the calibration curve is less than 3.5% based on six determinations in a month), high stability in its voltammetric response and low detection limit for thiocytosine, and high electrochemical sensitivity with respect to other biological thiols such as cysteine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.