Abstract

The authors report on a ratiometric electrochemical sensor for paracetamol (PR) which was fabricated by successively electropolymerizing a layer of Prussian blue (PB) and a layer of molecularly imprinted polypyrrole (MIP) on the surface of a glassy carbon electrode (GCE). The binding of PR molecules to the MIP has two effects: The first is an increase of the oxidation current for PR at 0.42 V (vs. SCE), and the second is a decrease in the current for PB (at 0.18 V) due to partial blocking of the channels which results in reduced electron transmissivity. Both currents, and in particular their ratio, can serve as analytical information. Under optimized conditions, the sensor displays enhanced sensitivity for PR in the 1.0 nM to 0.1 mM concentration range and a 0.53 nM lower limit of detection. The sensor was applied to the determination of PR in tablets and urines where it gave recoveries in the range between 94.6 and 104.9 %. This dual-signal (ratiometric) detection scheme (using electropolymerized Prussian Blue and analyte-specific MIP) in our perception has a wide scope in that it may be applied to numerous other electroactive species for which specific MIP can be made available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call