Abstract

The determination of mercury(II) ions can be achieved by monitoring the decrease in the oxidation peak of the tetraphenylborate ion in the presence of this metal ion at a carbon paste electrode. The reaction between mercury(II) and the tetraphenylborate ion results in the formation of diphenylmercury, thus providing the method with good selectivity over other metal ions. Using anodic stripping voltammetry in a neutral electrolyte, a linear dependence of the decrease of peak height was observed on increasing the mercury(II) concentration in the range 1 × 10 −6–8 × 10 −9 M mercury(II). Zinc(II), cadmium(II), lead(II), nickel(II), cobalt(II), tin(II), potassium(I) and ammonium(I) ions did not interfere at a 1000-fold concentration excess. Iron(III) and chromium(III) did not interfere at a 250-fold and 50-fold concentration excess, respectively. Following masking procedures, copper(II), bismuth(III) and silver(I) did not interfere at a 100-fold concentration excess. The method can be used to determine the concentration of mercury(II) in natural waters contaminated by this metal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call