Abstract

The feasibility of fabricating copper-sensitive chemically modified electrodes (CMEs) for trace analysis in aqueous and in 40% (v/v) ethanol-water media was investigated. Carbon paste electrodes modified with crown ethers were constructed by mixing the crown ethers into a graphite powder-paraffin oil matrix. The electrodes so formed were able to bind Cu(II) ions chemically and gave better voltammetric responses than the unmodified ones. The crown ethers studied and compared were 15-crown-5, benzo-15-crown-5 and dibenzo-18-crown-6. With a 3% benzo-15-crown-5 CME, Cu(II) could be quantified at sub-ppm levels by differential pulse voltammetry with a detection limit of 0.05 ppm. By differential pulse anodic stripping voltammetry Cu(II) could be quantified over the range I to 100 ppb. Interference from metal ions like Ni(II), Co(II), Mn(II), Fe(II), etc. have also been studied. The method was successfully applied to artificial as well as commercial samples of alcoholic beverages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call