Abstract

An electrochemical sensor for adefovir dipivoxil (ADV) detection was prepared by electropolymerization of o-phenylenediamine in the presence of ADV on a glassy carbon electrode modified with multi-walled carbon nanotubes and carbon nitride. The electrode was characterized by field emission scanning electron microscopy and differential pulse voltammetry. The performance was optimized by response surface methodology. The changes in differential pulse voltammetric peak currents of the redox probe, ferricyanide, were linear to ADV concentrations in the range from 0.1 to 9.9 μmol L-1, with the detection limit of 0.05 μmol L-1 (S/N = 3). The sensor was applied to the determination of ADV in drug formulations, human serum and urine samples. It is selective due to the use of an imprinted material, well reproducible, long-term stable, and regenerable. Graphical abstract By merging the unique properties of carbon nitride with intrinsic properties of MWCNTs, and molecularly imprinted polymers, a novel electrochemical sensor with selective binding sites was prepared for determination of adefovir dipivoxil in pharmaceutical and biological samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.