Abstract

In this study, we developed a new peptide nucleic acid (PNA) biosensor for detection of a single nucleotide polymorphism (SNP) in the UGT1A9 gene promoter region via electrochemical assay. The sensor relies on the immobilization of a 13-mer single stranded PNA probe related to the UGT1A9 gene on the Au electrode (AuE). The hybridization between the probe and its complementary sequence (DcUG275) as the target was studied by differential pulse voltammetry (DPV) of methylene blue (MB) signal. In this approach the extent of hybridization is evaluated on the basis of the difference between DPV signals of MB accumulated on the probe-AuE and MB accumulated on the probe-target-AuE. Some experimental variables affecting the performance of the biosensor including oxygen interference during the assay, probe immobilization time, probe concentration and MB accumulation time were investigated. The PNA probe modified AuE in its optimum condition was shown to be an effective sensor for the detection of hybridization and point mutations. The obtained detection limit of the utilized biosensor has been calculated as 22 nm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call