Abstract

Ferrocene, Fc, and cobaltocenium hexafluorophosphate, CcPF6, have been recommended for use as internal reference redox couples in room-temperature ionic liquids (RTILs), as well as in more conventional aprotic solvents. In this study, the electrochemical behavior of Fc and CcPF6 is reported in eight commonly used RTILs; [C2mim][NTf2], [C4mim][NTf2], [C4mim][BF4], [C4mim][PF6], [C4mim][OTf], [C4mim][NO3], [C4mpyrr][NTf2], and [P14,6,6,6][FAP], where [Cnmim]+ = 1-butyl-3-methylimidazolium, [NTf2]- = bis(trifluoromethylsulfonyl)imide, [BF4]- = tetrafluoroborate, [PF6]- = hexafluorophosphate, [OTf]- = trifluoromethylsulfonate, [NO3]- = nitrate, [C4mpyrr]+ = N-butyl-N-methylpyrrolidinium, [P14,6,6,6 ]+ = tris(n-hexyl)-tetradecylphosphonium and [FAP]- = trifluorotris(pentafluoroethyl)phosphate, over a range of concentrations and temperatures. Solubilities and diffusion coefficients, D, of both the charged and neutral species were determined using double potential-step chronoamperometry, and CcPF6 (36.5−450.0 mM...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.