Abstract

Paracoccus pantotrophus expresses two nitrate reductases associated with respiratory electron transport, termed NapABC and NarGHI. Both enzymes derive electrons from ubiquinol to reduce nitrate to nitrite. However, while NarGHI harnesses the energy of the quinol/nitrate couple to generate a transmembrane proton gradient, NapABC dissipates the energy associated with these reducing equivalents. In the present paper we explore the nitrate reductase activity of purified NapAB as a function of electrochemical potential, substrate concentration and pH using protein film voltammetry. Nitrate reduction by NapAB is shown to occur at potentials below approx. 0.1 V at pH 7. These are lower potentials than required for NarGH nitrate reduction. The potentials required for Nap nitrate reduction are also likely to require ubiquinol/ubiquinone ratios higher than are needed to activate the H(+)-pumping oxidases expressed during aerobic growth where Nap levels are maximal. Thus the operational potentials of P. pantotrophus NapAB are consistent with a productive role in redox balancing. A Michaelis constant (K(M)) of approx. 45 muM was determined for NapAB nitrate reduction at pH 7. This is in line with studies on intact cells where nitrate reduction by Nap was described by a Monod constant (K(S)) of less than 15 muM. The voltammetric studies also disclosed maximal NapAB activity in a narrow window of potential. This behaviour is resistant to change of pH, nitrate concentration and inhibitor concentration and its possible mechanistic origins are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call