Abstract

Since the last decade of the 20th century, many scientific disciplines have heavily relied on materials with nanometer dimensions. Nanomaterials are already integrated into numerous biomedical and pharmaceutical applications, including the delivery of active substances to specific targets within the body. This has been demonstrated by their contribution to the containment of the recent COVID-19 pandemic. Graphene, silver, gold, and other nanoparticles possess exceptional physical and chemical properties, including increased thermal stability, improved conductivity, and the capacity to host various organic substrates on their surface area. In the past 20 years, a significant field of nanoparticle synthesis has emerged, where eco-friendly reducing agents found in numerous plant species are used. This brief review focuses on the outstanding performance of metallic nanoparticles synthesized using "green methods" in designing voltammetric biosensors. The major goal of this short review is to highlight some of the latest electrochemical advances in exploring metallic nano-systems obtained via phytosynthesis from plant extracts, covering the most notable achievements in the design of amperometric and voltammetric biosensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call