Abstract

Voltammetry is an electrochemical technique widely used in quantitative analysis to determine nickel ions in food samples due to its excellent stability. Knowing the exact applied levels of metals such as nickel in different food samples is very important to prevent high nickel consumption, especially in people with allergies and nickel excess. Electrochemical analytical methods appear to be an alternative with many advantages, including high sensitivity, low detection limits on the g/L scale, ease of use, and simple sample preparation. This study describes the voltammetric behavior of nickel biosensors using biopolymers such as agar, chitosan, alginate, and carrageenan, to immobilize the receptors and investigates the analytical performance using three biopolymer concentrations. The analytical performance of screen-printed carbon electrodes (SPEs) immobilized with the biopolymer-biosensor combinations was analyzed by linear sweep voltammograms (LSVs). The voltammetric behavior favored the method using carrageenan in terms of linear sweep voltammetry (LSV) performance characteristics with sensitivities of 6.79 for 0.5%, and 6.87 for 1% (?A Mm-1 cm-2).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call