Abstract

AbstractFree acids commonly exist in anhydride and esters because they are unstable and tend to break down into free acids, which affect the quality of subsequent products in industrial production. Phthalic anhydride and ethyl acetate undergo hydrolysis reactions to form phthalic acid and acetic acid. A differential pulse voltammetry method for the determination of phthalic acid and acetic acid was developed with a bare glassy carbon electrode. Phthalic acid and acetic acid caused a new cathodic peak at more positive potential during the reduction of 1,4‐benzoquinone in acetonitrile or aqueous solution. The new peaks are attributed to the drastic increase in pH at the electrode surface caused by the consumption of protons in the benzoquinone reduction reaction. The peak current of the new cathodic peak was dependent on the concentration of phthalic acid and acetic acid but independent of BQ, phthalic anhydride, and ethyl acetate. This method does not cause hydrolysis of anhydride and ester because no external base is introduced. Furthermore, the method is sensitive, rapid, and does not require pretreatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call