Abstract

A rise in [K+]o, by depolarizing the resting membrane potential and partially inactivating the inward Na+ current (INa), is believed to play a critical role in slowing conduction during myocardial ischemia. In multicellular ventricular preparations, elevation of [K+]o has been suggested to decrease Vmax to a greater extent than expected from membrane depolarization alone. The mechanism of this voltage-independent effect of [K+]o is currently unknown, and its significance in single cardiac cells has not been determined. We have examined the voltage-independent effects of elevated [K+]o on INa and the action potential upstroke in isolated rabbit atrial and ventricular myocytes under voltage- and current-clamp conditions. Superfusate [K+] was varied from 5 mmol/L to 14 or 24 mmol/L, whereas [Na+] was maintained at 150 mmol/L. In cultured atrial cells and excised outside-out patches from freshly isolated atrial and ventricular cells, the amplitude and kinetics of INa were unchanged by elevation of [K+]o. In atrial cells, action potentials elicited from a holding potential of -70 mV had a similar Vmax (114.9 +/- 5.7 versus 112.2 +/- 4.8 V/s, mean +/- SEM, n = 6) and action potential amplitude (115.0 +/- 2.4 versus 113.4 +/- 3.9 mV) in 5 and 24 mmol/L [K+]o. In contrast, in ventricular cells at a holding potential of -70 mV, increasing [K+]o fro 5 to 14 mmol/L decreased Vmax from 161.8 +/- 18.0 to 55.3 +/- 5.0 V/s (n = 7, P < .001) and action potential amplitude from 128.1 +/- 1.3 to 86.6 +/- 5.4 mV (P < .001). This voltage-independent decrease in Vmax and action potential amplitude induced by elevated [K+]o was abolished in the presence of 1 mmol/L Ba2+, suggesting that it is attributable to an increased background K+ conductance. We conclude that elevation of [K+]o to levels expected during ischemia causes a marked voltage-independent depression of Vmax in ventricular cells, which may, in turn, contribute to the slowing of myocardial conduction characteristic of early ischemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.