Abstract

In cardiomyocytes voltage-gated Ca2+ channels are major players in cardiac cellular electrophysiology and cellular excitation-contraction coupling. Accordingly, Ca2+ channel dysfunction contributes to the development of cardiac arrhythmias and impaired cardiac contractile function. In addition, Ca2+ entry through voltage-gated Ca2+ channels is an important regulator of gene transcription and cardiac cellular metabolism. In order to fulfil these tasks reliably, Ca2+ channels are highly regulated by specific subunit compositions and various signaling pathways. This chapter provides an overview of the role of voltage-gated Ca2+ channels in cardiac cellular electrophysiology and summarizes their molecular composition, biophysical properties, and regulatory mechanisms, with a special focus on L-type Ca2+ channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.