Abstract

Membrane potential is a fundamental biophysical parameter common to all of cellular life. Traditional methods to measure membrane potential rely on electrodes, which are invasive and low-throughput. Optical methods to measure membrane potential are attractive because they have the potential to be less invasive and higher throughput than classic electrode based techniques. However, most optical measurements rely on changes in fluorescence intensity to detect changes in membrane potential. In this chapter, we discuss the use of fluorescence lifetime imaging microscopy (FLIM) and voltage-sensitive fluorophores (VoltageFluors, or VF dyes) to estimate the millivolt value of membrane potentials in living cells. We discuss theory, application, protocols, and shortcomings of this approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.