Abstract

Ca(2+) signaling and neurotransmission modulate touch-evoked responses in Merkel cell-neurite complexes. To identify mechanisms governing these processes, we analyzed voltage-activated ion channels and Ca(2+) signaling in purified Merkel cells. Merkel cells in the intact skin were specifically labeled by antibodies against voltage-activated Ca(2+) channels (Ca(V)2.1) and voltage- and Ca(2+)-activated K(+) (BK(Ca)) channels. Voltage-clamp recordings revealed small Ca(2+) currents, which produced Ca(2+) transients that were amplified sevenfold by Ca(2+)-induced Ca(2+) release. Merkel cells' voltage-activated K(+) currents were carried predominantly by BK(Ca) channels with inactivating and non-inactivating components. Thus, Merkel cells, like hair cells, have functionally diverse BK(Ca) channels. Finally, blocking K(+) channels increased response magnitude and dramatically shortened Ca(2+) transients evoked by mechanical stimulation. Together, these results demonstrate that Ca(2+) signaling in Merkel cells is governed by the interplay of plasma membrane Ca(2+) channels, store release and K(+) channels, and they identify specific signaling mechanisms that may control touch sensitivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call