Abstract

Magnetic multilayers with a separating insulating layer are used in a multitude of functional devices. Controlling the magnetic properties of such devices with an electric field has the potential to vastly enhance their performance. Nevertheless, experimental methods to study the origin of electric-field-induced effects on buried interfaces remain elusive. By using element selective x-ray resonant magnetic reflectometry we are able to gain access to changes in the electronic structure of interfacial atoms caused by an electric field. With this method it is possible to probe interfacial states at the Fermi energy. In a multilayer stack with a Ni/SiO_{2} interface, we find that the electric field slightly shifts the Ni L_{3}-edge in energy, which indicates a change of the oxidation state of interfacial Ni atoms. Further analysis of the strength of the effect reveals that only about 30% of the electrons moved by the electric field end up in interfacial Ni states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call