Abstract
Tamm plasmon modes are used to realize the modulation of multi-photon processes. Through effectively combining the rear-earth doped layer and a monolayer graphene in a Tamm structure, the emission of multi-photon processes can be tuned by the applied voltage. Results show that the proposed structure has a narrow absorption peak near 1550 nm, which is corresponding to the excitation source wavelength of the multi-photon processes. Importantly, the emission intensity of multi-photon processes can be tuned from 1 fold to ∼10.1 fold when we changed the applied voltage. Meanwhile, the emission color of the multi-photon processes can be tuned from yellow to green via adjusting the applied voltage. The proposed voltage tuning approach may be promoted to all kinds of nonlinear optical phenomenons, like Stimulated Raman Scattering, optical mixing and photorefractive effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Photonics and Nanostructures - Fundamentals and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.