Abstract

This paper addresses the problem of stabilizing voltages in DC microgrids given by the interconnection of Distributed Generation Units (DGUs), power lines and loads. As in [1], we propose a decentralized control architecture where the controller of each DGU can be designed in a Plug-and-Play (PnP) fashion by solving a local Linear Matrix Inequality (LMI) problem. However, differently from [1], when a new DGU issues a plug-in request, we no longer require that neighboring units update their local controllers in order to account for new electrical couplings. Indeed, a key feature of the novel approach is that the design of a local controller requires only the knowledge of the dynamics of the corresponding DGU. The proof of closed-loop asymptotic stability combines properties of graph Laplacians, structured Lyapunov functions and LaSalle invariance theorem. Theoretical results are backed up by simulations in PSCAD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.