Abstract

Advancements in power conversion efficiency and the growing prevalence of DC loads worldwide have underscored the importance of DC microgrids in modern energy systems. Addressing the challenges of power-sharing and voltage stability in these DC microgrids has been a prominent research focus. Sliding mode control (SMC) has demonstrated remarkable performance in various power electronic converter applications. This paper proposes the integration of universal droop control (UDC) with SMC to facilitate distributed energy resource interfacing and power-sharing control in DC microgrids. Compared to traditional Proportional-Integral (PI) control, the proposed control approach exhibits superior dynamic response characteristics. The UDC is strategically incorporated prior to the SMC and establishes limits on voltage variation and maximum power drawn from the DC–DC converters within the microgrid. A dynamic model of the DC–DC converter is developed as the initial stage, focusing on voltage regulation at the DC link through nonlinear control laws tailored for Distributed Generation (DG)-based converters. The UDC ensures voltage stability in the DC microgrid by imposing predetermined power constraints on the DGs. Comparative evaluations, involving different load scenarios, have been conducted to assess the performance of the proposed UDC-based SMC control in comparison to the PI control-based system. The results demonstrate the superior efficiency of the UDC-based SMC control in handling dynamic load changes. Furthermore, a practical test of the proposed controller has been conducted using a hardware prototype of a DC microgrid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call