Abstract
Both N-methyl-D-aspartate (NMDA) and serotonin (5-HT) receptors contribute to the generation of rhythmic motor patterns in the rat spinal cord. Co-application of these chemicals is more effective at producing locomotor-like activity than either neurochemical alone. In addition, NMDA application to rat spinal motoneurons, synaptically isolated in tetrodotoxin, induces nonlinear membrane behavior that results in voltage oscillations which can be blocked by 5-HT antagonists. However, the mechanisms underlying NMDA and 5-HT receptor interactions pertinent to motor rhythm production remain to be determined. In the present study, an in vitro neonatal rat spinal cord preparation was used to examine whether NMDA receptor-mediated nonlinear membrane voltage is modulated by 5-HT. Whole-cell recordings of spinal motoneurons demonstrated that 5-HT shifts the region of NMDA receptor-dependent negative slope conductance (RNSC) of the current-voltage relationship to more hyperpolarized potentials and enhances whole-cell inward current. The influence of 5-HT on the RNSC was similar to the effect on the RNSC of decreasing the extracellular Mg(2+)concentration. The results suggest that 5-HT may modulate this form of membrane voltage nonlinearity by regulating Mg(2+) blockade of the NMDA ionophore.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.