Abstract

It is shown that voltage self-sustained oscillations, which are determined by the properties of the near-electrode layer and electrohydrodynamic flows that are periodically formed in the colloid layer, emerge for a preset direct current at the electrodes of a plane-parallel cell filled with a colloid system consisting of stabilized magnetic nanoparticles dispersed in a weakly conducting liquid. The effect of self-sustained oscillations and periodic electrohydrodynamic flows in phase separation in the colloid system is analyzed. It is found that new dynamic formations are generated, which are regions of elevated concentration of magnetite particles having the shape of labyrinths of millimeter size. The emergence of a negative real part of the permittivity of the colloid layer is detected and attributed to the fact that the normal component of the internal electric field produced by volume charges becomes codirectional with the applied field when steady-state electrohydrodynamic flows appear in the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.