Abstract
In this paper, a battery charging and swapping optimization model is established for electric vehicles (EVs) and battery charging/swapping stations (BCSS). The EVs are categorized into private electric vehicles (PrEVs) and electric taxis (ETs), where the charging behaviors of PrEVs are modeled based on the Monte Carlo (MC) method, and the battery swapping (BS) strategies of ETs are optimized by bi-level dynamic game. Moreover, the voltage deviation of the power grid is considered in the load regulation process of ETs. A “path-location” model is established combining with the Floyd algorithm in the simulation and the IEEE 14-Bus system is used to derive the node voltage. Numerical results show that the proposed strategy can simultaneously increase the revenue of BCSS and ETs and reduce the voltage deviation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.