Abstract

AbstractGrid integration constraints are limiting the deployment potential of renewable energy sources in Malta. Large penetrations of photovoltaics in the low voltage (LV) distribution network pose a significant risk to grid stability due to their inherent intermittency and are known to cause overvoltages and reverse power flows. The authors evaluate how self‐consumption strategies with distributed battery energy storage systems can contribute to the voltage regulation in LV networks and the reduction of reverse power flows. The batteries are controlled to absorb the reverse power flow at the dwellings' point of common coupling, before this is injected into the LV network. Simulations show that uncoordinated strategies are not suitable to address the distribution network challenges during reverse power flows and evening peak demands. On the other hand, self‐consumption coordinated by a time‐varying feed‐in tariff (FiT) can provide higher profitability to the prosumers while providing added benefits to the utility. The net‐billing profitability for the prosumers in a self‐consumption scenario with time‐varying FiT is transformed from the downward trend of the uncoordinated scenario to an upward trend against the increasing values of storage capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call