Abstract

Treatment of bovine chromaffin cells with 40 mM KCl stimulates a 3-fold increase in total methionine enkephalin immunoreactivity (medium plus cells) and a 4-fold increase in proenkephalin mRNA (mRNAenk). These effects of KCl, which are dependent on extracellular calcium, can be blocked by treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), although release of methionine enkephalin appears less affected. Using fura-2-loaded chromaffin cells and a dual-excitation wavelength spectrofluorometer, we have examined whether the actions of KCl and TPA on methionine enkephalin synthesis and release can be explained by changes in intracellular free calcium ([Ca2+]i). KCl produced a rapid 600 nM increase in [Ca2+]i from resting levels of approximately 170 nM. Subsequently, [Ca2+]i declined to a new steady-state plateau which was approximately 275 nM higher than the original resting levels. The postdepolarization plateau of [Ca2+]i was reduced by TPA, (-)-(R)-202,791 (a dihydropyridine calcium channel antagonist), and LaCl3 (a nonselective calcium channel blocker). TPA also inhibited potentiation of the KCl-stimulated plateau of [Ca2+]i due to (+)-(S)-202,791, a calcium channel agonist. In contrast, TPA had no effect on resting [Ca2+]i and only slightly inhibited the initial rapid KCl-stimulated increase in [Ca2+]i. The inhibitory effects were maintained for 24 h in the continuous presence of TPA. We conclude 1) that TPA inhibits enkephalin synthesis by inactivating dihydropyridine-sensitive voltage-dependent calcium channels, 2) that these channels alone maintain elevated [Ca2+]i following KCl depolarization, and 3) that sustained elevation in [Ca2+]i is necessary in order to increase enkephalin synthesis in KCl-treated chromaffin cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.