Abstract

We describe a new design technique for efficient harmonic resonant rail drivers. The proposed circuit implementation is coupled to a standard pulse source and uses only discrete passive components and no external dc power supply. It can thus be externally tuned to minimize the consumed power in the target IC. A new design technique based on current-fed voltage pulse-forming network theory is proposed to find the value of each discrete component for a target frequency and a given load capacitance. The proposed circuit topology can be used to generate any desired periodic 50% duty-cycle waveform by superimposing multiple harmonics of the desired waveform, however, this paper focuses on the generation of trapezoidal-wave clock signals. We have tested the driver with a capacitive load between 38.3 and 97.8 pF with clock frequency ranging between 0.8 and 15 MHz. The overall power dissipation for our second-order harmonic rail driver is 19% of fC/sub L/V/sup 2/ at 15 MHz and 97.8 pF load.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.