Abstract

Voltage rise is the main obstacle to prevent the increase of distributed generators (DGs) in low-voltage (LV) distribution grids. In order to maintain the power quality and voltage levels within the tolerance limit, new measurement techniques and intelligent devices along with digital communications should be used for better utilization of the distribution grid. This paper presents a real-time sensor-based online voltage profile estimation technique and coordinated Volt/VAR control in smart grids with distributed generator interconnection. An algorithm is developed for voltage profile estimation using real-time sensor remote terminal unit (RTU) which takes into account topological characteristics, such as radial structure and high R/X ratio, of the smart distribution grid with DG systems. A coordinated operation of multiple generators with on-load tap changing (OLTC) transformer for Volt/VAR control in smart grids has been presented. Direct voltage sensitivity analysis is used to select a single DG system for reactive power support in multi-DG environment. The on-load tap changing transformer is employed for voltage regulation when generators’ reactive power contributions are not enough to regulate the voltages. Simulation results show that the reported method is capable of maintaining voltage levels within the tolerance limit by coordinated operation of DG systems and on-load tap changing transformer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.