Abstract

The plasma jet focusing and voltage distribution in the interelectrode gap of a vacuum arc with a ring anode and subjected to an axial magnetic field were studied theoretically. A two-dimensional model was developed based on the free plasma jet expansion into vacuum, and the steady-state solution of the fully ionized plasma in the hydrodynamic approximation was analyzed. It was found that the imposition of an axial magnetic field reduces the radial expansion of the plasma jet. The characteristic jet angle decreases from about 40/spl deg/ in the zero magnetic field case and approaches a value of about 20/spl deg/ with a 0.02 T magnetic field. The arc voltage consisting of the cathode drop, the plasma voltage drop, and anode sheath drop increased, with the imposition of a magnetic field, and decreased with the anode length. The model was compared to experimental measurements of the vacuum arc voltage behavior in an axial magnetic field, and good agreement was found.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call